Ensuring food security in Africa through Sustainable aquaculture

NADEEM NAZURALLY
SENIOR LECTURER
UNIVERSITY OF MAURITUS

Sustainable Marine Aquaculture in Mauritius: Challenges and Opportunities

Introduction

- Aquaculture (History)- Fattening of fishes in Barachois.
- Government has recently embarked on a new sector for the economy, namely the ocean. Aquaculture is key among the various activities identified for future development. Not only will it represent a new income and employment generating activity, it will also contribute to national food security.

Types of Marine Aquaculture in Mauritius

- 1. Barachois
- 2. Oysters farm (lagoonal)
- 3. Floating cage lagoonal aquaculture

Milestone in Aquaculture Development

Sites (2007)

31 sites for marine aquaculture

Ferme Marine de Maheboug Fish Farm

Lagoonal Floating Cage Aquaculture

Red drum and seabass

FMM has more than doubled the production at sea in the last 4 years from 1500 tons of biomass at sea to 3500 tons in 2020

Government Initiative for fisher people

- Support to fishermen communities
- Provision of aquaculture system and rabbit fish (Seganus sutor)

Challenges: Training need and adequate facilities

Environmental Assessment

- ➤ 48 species of seaweeds
- > 110 species of corals
- ➤ 132 species of fish
- And various other species of marine organisms

Figure 11: Map showing the marine biodiversity surveys. (Source: Google Earth)

Corals

Phytoplankton

	P	hytoplankton Density			
Stations		Amount Cells/L (n=3)			
		Summer	Winter	Summer	Winter
		Jan-16	Jul-16	Jan-17	Jul-17
Trou-aux-Biches Proposed Aquaculture Site (TABPIMAS)		2.68 x 10 ⁴ ± 4.10 x 10 ³	15.01x 10 ³ ± 10.51 x 10 ²	2.94 x 10 ⁴ ± 2.11 x 10 ⁵	$12.25 \times 10^3 \pm 1.24 \times 10$
Trou-aux-Biches Lagoon (TABL)	Total	2.01 x 10 ⁵ ± 1.63 x 10 ⁴	1.92 x 10 ⁴ ± 0.57 x 10 ³	2.07 x 10 ⁵ ± 2.01 x 10 ³	1.76 x 10 ⁴ ± 6.02 x 10 ³
Fish Farm Site (FFS1)	Phytoplankton Density (TPD)	7.45 ± 1.02 × 10 ⁶	3.51 ± 0.27 × 10 ⁵	7.06 ± 3.11 × 10 ⁶	6.24 ± 2.03 × 10 ⁵
Fish Farm Site (FFS2)		8.28 ± 1.17 × 10 ⁶	$4.62 \times 10^5 \pm 6.55 \times 10^2$	8.57±5.81×10 ⁶	4.72 ± 2.21 × 10 ⁵
Mauritius Ports Area (MPAS1)		9.87 ± 2.03 × 10 ⁶	6.07 x 10 ⁵ ± 3.04 x 10 ³	8.04 ± 2.52 x 10 ⁶	5.85 ± 0.21 x 10 ⁵
Mauritius Ports Area (MPAS2)		7.53 ± 2.29 x 10 ⁶	5.88 ± 1.44 x 10 ⁵	9.23 ± 2.33 x 10 ⁶	5.97 ± 0.79 x 10 ⁵
Balaclava Lagoon (BL)		6.24 x 10 ⁵ ± 2.06 x 10 ⁴	8.52 x 10 ⁴ ± 1.24 x 10 ²	5.77 x 10 ⁵ ± 3.23 x 10 ³	3.02 ± 1.06 x 10 ³

Potential for an Integrated Multi-Trophic Aquaculture

Challenges

Covid-19

- 95% of marine aquacultured product are exported;
 40% USA 40% EU 20% Others
- Since lockdown no export (No Airlines)
- Local customers (hotels and restaurants also non-operational)
- More expenses in keeping fish in cages
- Higher risk of mortality and losses

